Bonding in Phosphineborane and Phosphine Oxide: an Ab initio SCF-LCAO-MO Study

By J. Demuynck and A. Veillard*
(Institut de Chimie, 1, rue Blaise Pascal-67-Strasbourg, France)

Summary From ab initio SCF-MO calculations, d-orbital participation and π-back-donation appears important in $\mathrm{PH}_{3} \mathrm{O}$ but rather small in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$.

There is much speculation concerning the nature of the co-ordinate bonding by the phosphine molecule PH_{3}. Two simple adducts of this molecule are the phosphineborane molecule $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}{ }^{1}$ and the hypothetical phosphine
geometries: $\mathrm{P}-\mathrm{H}$ bond length $1 \cdot 420 \AA$ (experimental value in $\mathrm{PH}_{3}{ }^{7}$), $\mathrm{P}-\mathrm{B}$ bond length $\mathrm{I} .93 \AA$ (experimental value ${ }^{8}$), $\mathrm{P}-\mathrm{O}$ bond length $1.48 \AA$ (experimental value in $\mathrm{Me}_{3} \mathrm{PO}^{9}$), $\mathrm{B}-\mathrm{H}$ bond length $\mathrm{I} \cdot 19 \AA$ (average $\mathrm{B}-\mathrm{H}$ bond length ${ }^{10}$). All angles were assumed to be tetrahedral: this assumption appears reasonable on the basis of the experimental values for the C-P-C and C-P-O angles, respectively 106° and 112°. in trimethylphosphine oxide. ${ }^{9}$

	$\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$	$\mathrm{PH}_{3} \mathrm{O}$	PH_{3}	BH_{3}
Total energy (a.u.)	-368.8480	-417.3168	-342.4382	-26.3521
Dipole moment (${ }^{\text {d }}$	5.51	$4 \cdot 74$	$1 \cdot 11$	1.04
Atomic populations				
P 3s	$1 \cdot 46$	1.20	$1 \cdot 54$	
$3 p_{\sigma}$	1.26	0.74	$1 \cdot 67$	
$3 p \pi$	1.70	$1 \cdot 62$	1.56	
$3 d_{\sigma}$	$0 \cdot 08$	$0 \cdot 14$	0.06	
$3 d_{\pi}$	0.05	$0 \cdot 22$	0.03	
Total	14.55	13.92	14.87	
X $2 s$	0.75	1.84		0.86
$2 p_{\sigma}$	$0 \cdot 46$	1-34		$0 \cdot 01$
$2 p_{\pi}$	$1 \cdot 64$	$3 \cdot 50$		1.72
Total	$4 \cdot 86$	8.72		$4 \cdot 58$
$\mathrm{H}_{\mathrm{P}} \mathrm{l} s$	1.00	$1 \cdot 10$	1.02	
Total	1.02	1-12	$1 \cdot 04$	
Hx ${ }^{\text {s }}$	$1 \cdot 16$			1.12
Total	$1 \cdot 18$			$1 \cdot 14$
Overlap populations				
P-X (σ)	0.458	$0 \cdot 586$		
P-X (π)	$0 \cdot 100$	$0 \cdot 646$		
$\mathrm{P}-\mathrm{X}$ (Total)	0.558	1-232		
3 s 2 s	-0.022	-0.097		
$3 p_{g}$ 2s	0.018	0.007		
$3 d_{\sigma} \quad 2 s$	0.006	0.025		
$3 p \pi \quad 2 p \pi$	0.084	0.438		
$3 d_{\pi} \quad 2 p \pi$	0.016	$0 \cdot 190$		
$3 \mathrm{~s} \quad 2 p_{\sigma}$	0.200	$0 \cdot 239$		
$3 p^{2} \quad 2 p^{\prime}$	$0 \cdot 244$	0.343		
$3 d_{\sigma} \quad 2 p_{\sigma}$	$0 \cdot 012$	$0 \cdot 057$		

oxide molecule $\mathrm{PH}_{3} \mathrm{O} .{ }^{2}$ The importance of $3 d$-orbitals in phosphorus bonding has been a controversial question for a long time and, for instance, it has been assumed that the co-ordination in $\mathrm{PF}_{3} \cdot \mathrm{BH}_{3}$ is enhanced by back-donation to the phosphorus empty d-orbitals. ${ }^{3}$ Much discussion has been devoted to the nature of the $\mathrm{P}-\mathrm{O}$ bond in phosphoryl molecules, whether it is best considered as a $\mathrm{P}=\mathrm{O}$ double bond or as a σ-dative bond with some π-back-bonding. ${ }^{4}$

We report here the results of $a b$ initio SCF-LCAO-MO calculations for the $\mathrm{PH}_{3} \mathrm{O}$ and $\mathrm{PH}_{3} \mathrm{BH}_{3}$ molecules, together with calculations for the parent compounds PH_{3} and BH_{3} (in a tetrahedral conformation). We used a basis set of twelve s and nine p Gaussian functions on phosphorus, ${ }^{5}$ ten s and $\operatorname{six} p$ functions on boron and oxygen, ${ }^{6}$ five s functions on hydrogen; ${ }^{6}$ to these orbitals, a set of d functions on P (exponent 0.55) and on O (exponent $1 \cdot 0$), a $d_{x z}$ and $d_{y z}$ function on B (exponent $1 \cdot 0$), and a set of p functions on H (exponent $0 \cdot 8$) have also been added. \dagger

Calculations have been performed with the following
\dagger The ternary axis of the molecules has been taken as the z-axis.

The results are summarised in the Table. As a test of the quality of our wave functions, we shall first compare our results for the phosphine molecule with those reported recently. ${ }^{11}$ The basis set used in ref. 11 differs from our basis set only by the use of two sets of d functions. The corresponding energy value for a tetrahedral angle (pyramid height of $0.47 \AA$) is -342.440 a.u., slightly lower than our value. The corresponding values for the dipole moment, the phosphorus $3 d$ population, and total population are $0.90 \mathrm{D}, 0.17$, and 14.85 , to be compared with our values of $1 \cdot 11 \mathrm{D}, 0.09$, and $14 \cdot 87$. Apart from a slight reduction in the d orbital population due to the use of only one set of d functions, our results are very close to the one reported by Lehn and Munsch.

A much debated question is the d-orbital participation in phosphorus compounds. From the Table, it is apparent that this participation is much more important in $\mathrm{PH}_{3} \mathrm{O}$ than in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$ or in PH_{3}. The d-orbital population is 0.09 in PH_{3} and 0.13 in $\mathrm{PH}_{3} \mathrm{BH}_{3}$, but rises to 0.36 in $\mathrm{PH}_{3} \mathrm{O}$

Most of the $3 d$ population in $\mathrm{PH}_{3} \mathrm{O}$ is of $3 d_{\pi}$ type, while it is of $3 d_{\sigma}$ type in PH_{3} and $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$. The d-orbital participation is also apparent from the overlap populations. The contribution of phosphorus $3 d$-orbitals to the overlap population for the $\mathrm{P}-\mathrm{X}$ bond ($\mathrm{X}=\mathrm{B}$ or O) is only 0.034 in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$ but rises to 0.272 in $\mathrm{PH}_{3} \mathrm{O}$.

Examination of the overlap population reveals some important differences in the nature of the $\mathrm{P}-\mathrm{B}$ and $\mathrm{P}-\mathrm{O}$ co-ordinate bonding. In both molecules, there is an appreciable σ-bonding between the $3 s$ and $3 p_{\sigma}$ orbitals of phosphorus and the $2 p_{\sigma}$ orbital of boron or oxygen. In addition, there is in $\mathrm{PH}_{3} \mathrm{O}$ a significant π-bonding between the $3 p_{\pi}$ and $3 d_{\pi}$ orbitals of phosphorus and the $2 p_{\pi}$ orbital of oxygen. Such π-bonding is much weaker in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$. This π-bonding and the correlative participation of phosphorus $3 d$-orbitals may be correlated with the π-donor ability of the co-ordinated group, the borane group being a very poor donor and the oxygen atom a relatively good one. A similar conclusion has been reached by Hillier and Saunders in a discussion of the bonding for the ligands PF_{3} and $\mathrm{PMe}_{3} .{ }^{12}$

Some insight into the nature of the co-ordinate bonding is also given by an examination of the charge transfer. The formal charge of the phosphorus atom is +0.13 in $\mathrm{PH}_{3},+0.45$ in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$, and +1.08 in $\mathrm{PH}_{3} \mathrm{O}$, the charge of the boron atom is -0.42 in BH_{3} and -0.14 in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$ and the charge of the oxygen atom -0.72 in $\mathrm{PH}_{3} \mathrm{O}$. This indicates that the charge transfer in $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}$ is relatively small, about 0.3 e , which is of the same order of magnitude as in $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3} \cdot{ }^{13}$ The π-charge-transfer is negligible and most of the σ-charge-transfer goes from the $3 p_{z}$ orbital of phosphorus to the $2 p_{z}$ orbital of boron. The large charge-transfer in $\mathrm{PH}_{3} \mathrm{O}$ is the result of a large σ -charge-transfer of about $1 \cdot 2 \mathrm{e}$ towards oxygen and of a smaller π-back-donation from the oxygen atom towards the phosphine group of about 0.5 e . In the three compounds $\mathrm{PH}_{3} \cdot \mathrm{BH}_{3}, \mathrm{NH}_{3} \cdot \mathrm{BH}_{3},{ }^{13}$ and $\mathrm{NH}_{3} \mathrm{O}^{14}$ which exhibit no backdonation, the computed dipole moments are very close, respectively $5 \cdot 5,5 \cdot 8$, and $5 \cdot 7 \mathrm{D}$. In $\mathrm{PH}_{3} \mathrm{O}$, this value is decreased to 4.7 D by back-donation of π-electrons.
(Received, May 18th, 1970; Com. 763.)
${ }^{1}$ R. W. Rudolph, R. W. Parry, and C. F. Farran, Inorg. Chem., 1966. 5, 723.
${ }^{2}$ E. Wiberg and G. Müller-Schiedmayer, Z. anorg. Chem., 1961, 308, 352.
${ }^{3}$ W. A. G. Graham and F. G. A. Stone, J. Inorg. Nuclear Chem., 1955, 3, 164.
${ }^{4}$ R. F. Hudson, Adv. Inorg. Chem. Radiochem., 1963, 5, 347.
${ }^{5}$ A. Veillard, Theor. Chim. Acta, 1968, 12, 405.
${ }^{6}$ S. Huzinaga, J. Chem. Phys., 1966, 45, 2593.
${ }^{7}$ C. A. Burrus, A. Jacke, and W. Gordy, Phys. Rev., 1954, 95, 700.
${ }^{8}$ E. L. McGandy, Diss. Abs., 1961, 22, 754.
${ }^{9}$ H. K. Wang, Acta Chem. Scand., 1965, 19, 879.
${ }^{10}$ "Interatomic Distances," Chem. Soc. Special Publ. No. 11, (1958).
${ }^{11}$ J. M. Lehn and B. Munsch, Chem. Comm., 1969, 1327.
${ }^{12}$ I. H. Hillier and V. R. Saunders, Chem. Comm., 1970, 316.
${ }^{13} \mathrm{~A}$. Veillard and R. Daudel, Colloque International du C.N.R.S. No. 191, "La nature et les propriétés des liaisons de co-ordination," Paris, 1969.
${ }_{14}$ P. Millie and G. Berthier, Colloque International du C.N.R.S. No. 191, Paris, 1969.

